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The aim of the talk will be to explain how the statistical task to learn
so-called Bayesian network structure from data leads to the study of
a special polyhedron, and to report on what was found out about
that polyhedron so far.

1. Motivation

Bayesian networks (BN) are basic graphical models, used widely both in statistics
and artificial intelligence [6]. These statistical models of conditional independence
structure are described by acyclic directed graphs whose nodes correspond to (ran-
dom) variables in consideration.

The motivation for the research reported in this talk is learning Bayesian network
structure from data by the method of maximization of a quality criterion. By
a quality criterion is meant a real function Q of a BN structure (= of an acyclic
directed graph G, usually) and of a database D. The value Q(G, D) “evaluates” how
the BN structure determined by G fits the observed database D. A kind of standard



example of such a criterion is Schwarz’s Bayesian information criterion (BIC) [10],
but there is also a bunch of “marginal likelihood” criteria that are motivated by a
Bayesian viewpoint [7].

The basic idea of an algebraic and geometric approach to this topic, proposed in
Chapter 8 of [11] and later developed in [13], is to represent the BN structure given by
an acyclic directed graph G by a certain vector uG having integers as components,
called the standard imset (for G). Note that the number of components of that
vector is much higher than the number of (random) variables in consideration.

The point is that then every reasonable criterion Q for learning BN structures
(namely, score equivalent [2] and decomposable [3] one) is an affine function of the
standard imset. More specifically, one has

Q(G, D) = sQD − 〈tQD, uG〉,

where sQD is a real number, tQD a vector of the same dimension as the standard
imset uG (these parameters both depend solely on the database D and the criterion
Q) and 〈∗, ∗〉 denotes the scalar product. The vector tQD is named the data vector
(relative to Q). Note that the formulas for the data vector relative to the BIC and
the “marginal likelihood” criteria are available [12].

2. Standard imset polytope

The main result of [13] is that the set of standard imsets over a fixed set of
(random) variables N is the set of vertices (= extreme points) of a certain polytope
P, called the standard imset polytope in the sequel. Thus, as every reasonable quality
criterion Q can be viewed as (the restriction of) an affine function on the respective
Euclidean space, the task to maximize Q over BN structures is equivalent to the
task to maximize an affine function over the above-mentioned polytope P.

This maximization problem has been treated thoroughly within the linear pro-
gramming community. The intention to apply linear programming methods in the
area of learning BN structures motivated several open mathematical questions con-
cerning that polytope (see the conclusions of [13]). Here we report on some of them.

3. Towards the outer description of the polytope

A standard tool to solve linear programming problems is the simplex method [8]. In
order to apply the (classic) simplex method, one needs an explicit outer description
of the polytope via finitely many linear inequalities (= in the form of a polyhedron).

As concerns the standard imset polytope P, for |N | = 3 and |N | = 4 a minimal
such system has 13 and 154 inequalities, respectively. However, it is already a
challenge to existing software packages to find such a minimal inequality description
of P for |N | = 5 (given by 8782 vertices). Thus, for general |N |, one definitely needs
to classify these inequalities implicitly.

One of our research directions was to (try to) classify necessary linear inequal-
ity constraints on P. In [14] we analyzed the case |N | = 4 and came with the
classification of inequalities into three classes, namely:

• trivial equality constraints



• inequality constraints that correspond to (standardized) extreme supermod-
ular functions on the power set of N ,

• inequality constraints which correspond to classes of subsets of N that are
closed under supersets.

We conjecture that these constraints already characterize the polytope P and the
current task is either to confirm or disprove this conjecture for |N | = 5.

4. Geometric neighborhood

One of possible interpretations of the simplex method is that it is a kind of search
method, in which one moves between vertices of the polytope along its edges (in
the geometric sense) until an optimal vertex is reached. This motivated in [13] the
concept of the geometric neighborhood for standard imsets, and, consequently, for
BN structures.

More specifically, two standard imsets are called geometric neighbors if the line
segment connecting them is 2-dimensional face (= an edge) of the polytope P. An-
other research direction was to compute the geometric neighborhood for a small
number of variables and (try to) interpret it.

We have succeeded to compute the geometric neighborhood for |N | = 3, 4, 5. As
a by-product we compared it for |N | = 3 with the inclusion neighborhood [7], which
is at the core of current computer science search techniques (for maximization of
a quality criterion), like so-called GES algorithm [3]. Our computations suggest
that, for most standard imsets, there are many more geometric neighbors than
the inclusion neighbors. This observation has a simple but notable consequence
from the statistical point of view: the GES algorithm may fail to find the global
maximum of a quality criterion. Actually, we think that this is an inevitable defect
of the inclusion neighborhood, which may occur whenever a special statistical data
faithfulness assumption is not guaranteed.

The result of our analysis of the geometric neighborhood in the case |N | = 4 is
an electronic catalogue of types of geometric neighbors [15]. The catalogue is meant
as a step towards a deeper analysis of the geometric neighborhood. We would like
to find out whether one can describe geometric neighborhood in graphical terms.

5. Lattice points in the polytope

Raymond Hemmecke was interested in the question of how “thick” the standard
imset polytope P is. More specifically, he made some computations to find out
whether there exists a lattice point in its interior for |N | ≤ 5 and the result was
negative.

This led him to a conjecture that every lattice point in the standard imset polytope
is already a standard imset. In [14] we confirmed his conjecture. The final proof
is surprisingly simple. The idea is to apply certain one-to-one affine transformation
which ascribes lattice points to lattice points. The point is that the images of
standard imsets are vectors, whose components are zeros and ones. As there is no
lattice point in the interior of the 0-1 hypercube, the above statement is immediate.



6. Characteristic imset

The image of the standard imset uG by that transformation, called the charac-
teristic imset (for G) in [5], may occur to be even better algebraic BN structure
representative. It is much closer to the graphical description because some of its
components directly correspond to adjacencies in G and allows to identify so-called
immoralities in G, which together with the adjacencies characterize the BN structure
graphically [1].

One of our further research plans is to apply the geometric approach to restricted
learning graphical models. If we restrict our attention to so-called decomposable
models [6] then the characteristic imset has quite simple form [5].

The situation is particularly transparent in the case of undirected forests, when
adjacencies in the graph correspond to ones in the characteristic imset. The corre-
sponding (transformed) polytope has already been studied in matroid theory and
both its outer description and edges were characterized [9]. This allows us to give the
geometric interpretation to the classic heuristic procedure for learning undirected
trees [4].
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[11] M. Studený, Probabilistic Conditional Independence Structures, Springer Verlag, 2005.
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